Thursday, March 18, 2010

How Polymers and People Remember

There has been a recent innovation out of a General Motors research lab that has captured my attention, and it has nothing to do with fast new cars or wasted opportunities on fuel efficient ones  (http://www.technologyreview.com/energy/24718/?a=f). Actually it is a way in which they are using a unique polymer that sound to many people like science fiction (think shape changers). The basic idea is that this particular polymer has the ability to become up to 4 distinct shapes while maintaining the ability to return to its original shape. These shapes are activated by temperature. So, if exposed to one temperature, they become one shape, and when exposed to another, they become another. The report headlines are saying these are polymers with “memory”. Actually to me, who works with polymers like elastomers, the idea of our materials having memory is nothing new. In fact we rely on that memory for creating parts made from them, and everyone needs this in using them. This is everything from heart valves to car tires. We say memory in our lectures when talking about elasticity. That is, something that is elastic appears to have a memory of sorts. Imagine a scale for instance. It is basically a metallic spring inside a box. When you stand on the scale a spring compresses, taking on a different shape, and giving a weight reading on a dial or screen. When you step off of the scale the spring returns to its original form, and the display returns to 0. So we could in a way say that the spring in the scale has a memory of what it was like to not have a person standing on it. When we are talking about elastomers, the material “memory” is a bit more nuanced. An elastomer doesn’t fully recover its original form, like the spring, because it is not just elastic; it is visco elastic. It behaves not just like a spring, but also like a liquid. This is all a graduate course, and one that I love teaching, but it is a long story. An elastomer does almost recover, but not entirely. We still say that if it is close enough (imagine a rubber band) it does have memory. It is just that the memory is not as perfect as the memory of the spring. It is however capable of doing a lot more interesting things, including taking on new shapes, and new properties. The reason this all works is due to the molecular nature of polymers. Polymers are made of many long chain molecules that work together. When they are at rest they are generally entangled around each other into a rat’s nest of strings. Many polymer scientists use the picture of a bowl of spaghetti when visualizing this. When they are pulled, or sheared, they tend to straighten out, becoming less tangled. When released they go back to the tangled up state. Hence the tangled up state is statistically and to our eyes similar to what it was before being pulled apart. We can say then that these long molecules remembered where to go. Truthfully though they didn’t go exactly back to the positions they were in before. They went just close enough. This is why the memory is not perfect.

This metaphor to memory, or suggestion that it is like animal memory (including human memory), is not really such a stretch. I have written before about re- consolidated memories in people http://putmanonart.blogspot.com/2009/05/re-consolidated-theatre.html. The idea is that we never truly remember any event from our past, but instead an approximation of that memory based on the last time we remembered it. If we now imagine the brain, we see a tangled web of axons and dendrites, and memories which are occurring through neural synapses. This also looks a bit like a bowl of spaghetti. These are electrically charged chemically induced connections between neurons (brain cells). When we remember an event the firing of these synapses never arrive at the receptors in the exact way that they did the previous time. So in essence we are like the elastomer. We remember where we have been, but only to a statistical accuracy that is fairly good.

There is another similar thing with elastomeric polymers and the human brain. The memory tends to get worse with age. Even the best elastomers experience fatigue and degradation throughout time. A tire for instance can work for 100,000Km but will eventually wear out. This may very well be like our brains as well. 

This blog may very well be the last bit of evidence that people will need when saying I am stuck in a lab too much. I am comparing the complexity of humanity to a piece of rubber. They may be right, but the idea is not to diminish the brain. In fact it is that spaghetti bowl in our heads that allowed us to figure out how to use materials to do these complicated things. It is just that polymer technology and neuroscience are generally not linked in the way way other biomimicy technologies are. This blog is actually again an admiration of nature, which did something spectacular before we even knew it was happening.

Thursday, February 25, 2010

The Glory Days of Space Labs

Many of the lab researchers and technicians that I have had the chance of working with over the last ten years were lucky enough to have started in their labs just as the last generation of true basic research programs were being transformed into modern corporations. Many people are familiar with some of these mid twentieth century power house invention factories, which produced many of the technologies that are ubiquitous now. The most famous are Bell labs and Xerox PARK, which were sectors of large corporations, but whose inventions were not limited to an assigned market within the company. These were not the only two where this type of basic research was taking place, which is easy to see if you read any of the scientific literature of the period. Labs at DuPont, Cabot and BF Goodrich had such esoteric, but important work being done on mathematical modeling, quantum particle physics and even nano-science (before that term was invented), that it is hard to recognize that this research came out of corporations, rather than government facilities. The people who I mentioned working with are the next generation, who look back in envy at their predecessors, who had no marketing reports required in order to justify the research they were doing. These discussions have been on my mind ever since I started reading about the Obama plans for NASA, and the opportunities it may provide for private firms doing space research and exploration. What I continually wonder is whether these new companies engaged in this work will be more like the corporations of the past, who published important, even ground breaking work, with direct market feasibility, or if they will be more like the quarterly profit driven corporate lab environments we currently experience in so many sectors. Mostly I think that for the next few years privatization of space labs and space travel is encouraging, as the entrepreneurs in these fields, such as Elon Musk, Jeff Bezos and Richard Branson are real visionaries. When though does the next generation start, when post IPO companies of the future begin to ignore major findings, and governments are no longer there to unconditionally support them? It will be fun to watch and participate in, and when I am old look back at the glory days of the corporate space lab.

Wednesday, January 6, 2010

Science Money


Last month a colleague in Paris gave me an article about general funding of research by governments and companies in Japan, The United States and in Europe. The results of the study were fascinating to me, from my prospective as an American scientist living in Paris. The basic findings were that in terms of money, Europe spends less on Research and Development than the United States, and has less researchers. It also showed that there are less patents applied for in Europe than in the United States. The one area where Europe exceeded the United States was in number of scientific papers published. These numbers were surprising to me for a few reasons. In general my feeling is that science education is more rigorous, and scientists more respected in Europe. I had also been a part of a European funded research project that gave me a lot of confidence in the European focus. So I have kept this study in mind as I have been working out of the lab here in Paris, and collaborating with scientists. I have found several examples where these results make a lot of sense.
  1. France seems to be a country of polymaths, and ideas. There is a long and very respectable history of this, which included people like Descartes, Lavoisier, and even Voltaire, who in addition to being a philosophical novelist, went to England to seek out Newton. This reverence for knowledge has not gone away. When teaching a course in Paris, an engineering student brought me a Baudelaire poem to illustrate a point I had made in a previous lecture. This is a wonderful intellectual and historical curiosity, and can lead people down the path of publications. It doesn't however lead to the type of specialization that would be considered basic research. Over lunch at a university south of Paris, I spoke with the head of the chemistry department about specialization. He nostalgically recalled a time 200 or so years ago when it was possible to learn all of the known scientific knowledge available. He recognized that this is no longer possible, yet his romantic longing for such broad knowledge must in some ways translate to his research, which is at a very high level, but not focused enough to be modern Nobel Prize innovation. I can certainly relate to this, as I am not only interested in various disciplines of science, but equally in music, poetry and art. If he is frustrated not to be able to know everything scientifically, imagine how frustrated I am? Still this ideology is revealing. As with the other differences it leads me to wonder which comes first, the lack of funding, or the lack of focus to achieve the funding.
  2. As we are all aware the United States is a highly competitive place, where innovation has historically led to some major advantages. It may very well be that our government labs and leaders are savvier than I have often given them credit for. There may very well be a realization that research is the best way to fuel technology, which in turn grows the economy. It is hard however to think that Europe doesn't have as much of this focus. After all, Chancellor Merkel of Germany is a Ph.d Physical Chemist, where most of our leaders couldn't pass high school physics. I think though that research just happens to be the place where American economic interests are currently best served. It is business, not science that is in fact inspiring the science. So thinking of research as a business, it becomes easier to see how Europe may be behind. Starting a business in Europe is a much more difficult process than doing it in the United States. I have done both. It is also something, which in France at least, is not as sought after. While I mentioned that scientists are respected in Europe, I get the sense that entrepreneurs are more respected in the United States. I have heard some of the best ideas from colleagues here in Paris for inventions. These ideas would be the seeds for patents and new companies in the United States. In France they become research papers, or subjects for lectures. It is likely therefore that a government would not see the financial returns of research investment without first reforming barriers to create companies, and the mindset that goes with it.
  3. The last point that I want to make though, is that I think these statistics, and this history are becoming less relevant, as the world economy, and scientific collaboration unite. Every day we e-mail Chinese, Indian, American and Thai researchers. We co-author papers with people we have never met in person. We open businesses in countries we have not visited. The budgets, I would guess, will become similar throughout the world, and innovation will not be national. I met an entrepreneur yesterday with a growing 100 person French company. He is opening his first US factory in the spring. By next year he will no longer be reliant on European funding and business structure alone, but on the The United States as well. This goes both ways, and will continue to do so. These new generations of researchers are more business savvy and more international than the previous generation. Hopefully this means that in The United States we will benefit from European philosophical prospective, history and polytechnical abilities, while Europeans benefit from our willingness to take risks in exploiting sciences discoveries. I feel very confident that this is happening.