Thursday, October 1, 2009

From Rubber to Buckyballs

I have only been teaching for just over one year, but for the moment it is in invigorating and strange process. Whenever I am giving a lecture, no matter how well prepared I am for it, I seem to be learning as much as my students when I am speaking. It is as if giving the lecture itself reveals a mental connection that wasn’t present when the lecture was being written. This past weekend I spoke at an astronomy institute, which in itself is a stretch, as I am not an astronomer. I stayed close to things I know however, and talked about materials which I think show great promise for use in space suits and space craft. This talk led me down several new paths of discovery, all of which have been a lot of fun. Like lectures for my students, I discovered a connection that I had not thought of before. That is a connection between fairly traditional materials that have been used for 150 years, rubber, and new cutting edge materials, referred to as nanomaterials. What it made me realize is that the history of rubber technology and the emergence of nanotechnology share a lot of similarities that we can learn from.
By 1830 Rubber was a large and speculative market in the United States and Europe. Having been brought by Europeans from Brazil, the latex of the Hevea tree was more than just a fascination. Scientists and industrials all realized that Rubber was a unique material, with this strange elastic behavior not seen in anything else. In the late 18th Century Joseph Priestley, the great British inventor and intellect, first enjoyed rubber, giving it its name, as he used it to rub out pencil lead. As science became more sophisticated, especially chemistry, the concept of the macromolecule, which was the foundation of thee high molecular weight natural rubber that came from Brazil, was being studied by great scientists like Michael Faraday, and industrialist like the Mackintosh. In the United States investors flocked to the rubber rage, opening factories across the east coast. For 10 years however rubber disappointed from a commercial standpoint. Unable to reach the high expectations of being the wonder material that could do everything, it remained sticky, and a true mess in heat and cold. This was of course until the impoverished, but obsessively dedicated inventor Charles Goodyear worked for 8 long years to unlock the secret to Rubbers brilliance. He eventually discovered that sulfur and lead, with evenly distributed heat, caused the rubber to have the dream properties that were predicted by early adopters. Goodyear in his own book on his new vulcanized rubber described over 250 products that would come from rubber. This was before the tire. Eventually there would be thousands. The properties of rubber were, and still are extraordinary. Elastic, waterproof, insulting, durable etc. Rubber , whether natural or synthetic, is now a crucial part of modern life. Without it there would be no cars, planes or balloons.

Nanotechology seems to me to be in a similar position as rubber was before Charles Goodyear’s great discovery. Like the industrialists and scientists of that time, Nanoparticles have been touted as the most amazing materials ever discovered. Four noble prizes have been awarded in fields related to nanotechnology, including one to Richard Smalley for his discovery of fullerens, more commonly known as buckyballs, which are 60 carbon atoms that together make one of the most unique molecules imaginable. A spin off of this are carbon nanotubes, which have strength greater than steal, with flexibility of elastomers. They have unique electrical abilities, as they defy some basic concepts such as ohms law. They have no resistance. They also obey some interesting Quantum mechanical effects, including being able to be entangled, which can lead to new types of computing. They can be packed into very small spaces as well, making them a possible next generation of microchips. They can be used as tiny antennae for solar cells. Like Goodyear’s 250 possibilities of rubber, nanotechnologist have thought of that or more.
The fact, and challenge remains that while investment and research have been strong in nanotechology, a Goodyear type eureka moment, where fabrication and utilization are available has not happened yet. In fact investors have tended to say the perhaps nanotechology was more hype than reality. I would say however that we need to remember that with diligence, the secrets of science can become the common products of our future.

Going back to my lecture on space materials, what I took away from it all is that we must remember how this old unique technology of rubber, and how new innovations in nanotechnology can be material partners for the future.

Wednesday, August 12, 2009

Is Edison Still Relevant?

It is August in Paris, and for anyone who has spent any time in France knows, there is little chance of finding many laboratories open, as the country has gone south for the month. So my search for labs is on hold until September. Since I have the time I have been reading a lot of blogs, discovering new gardens with my daughter, and having fun using our amateur microscope together. I did find some of my old online photo albums last night, and many photos of a film which I was producing, called “The Edison Project”, which never got completed. The idea of the film was something I had wanted to explore for a long time, which was how a research lab, Thomas Edison’s in New Jersey, could make the first films. That is, how such diversity of innovation came from one small lab, which led not only to the light bulb, but also the moving image, which would become a new way to understand humanity and nature. Of course the movie business is a large industry, which requires a great deal of expense and is ultimately why the film was never completed. The director, Martin Cespedes, and myself, spent several years on this journey though (starting in 2000), and like so much unfinished business in life, it did inform and inspire so much of what I was doing simultaneously with my family business, and would do later when setting up labs.
My family business was a small company in Ohio that my parents had started 20 years before called Tech Pro. The company was an enterprise started in our family’s garage, with a small guest bedroom in the house doubling as an office. Though this story doesn’t end with us becoming a Dell or Hewlett Packard, my parents did manage to create a successful company (moving out of the garage) that did some truly innovative work in laboratory instrumentation and software. I have always considered my Dad to be an Edison type, minus the anti-Semitism and egomania. He is Edisonian in that while educated in mathematics, he always learned most through experiment and reading. He also has a general optimism that allows him to create things that others say is not possible. I hope I have inherited some of this, though I am afraid I don’t live in places where having a garage to work in is economically possible. What I did have 9 years ago when we started the Edison Project was my first fulltime position at Tech Pro. I was “Director of Development”. There was not a strict job description for this position, as it was a title Dad and I created ourselves, and had not existed at Tech Pro before. What I knew was that it was up to me to figure out what to do with it, while at the same time learning about everything from accounting, to shipping, to sales, and even some limited technical service. So, I was doing two things, producing a feature film and trying to run development for a technology company, which were both overly ambitious as I had no experience or education in either at the time. Still, when Martin and I first visited the Edison labs in Orange New Jersey, I was so excited that I would never stop day dreaming about doing what Edison did.
The Orange facilities are rather large, as they were the head quarters for his businesses, the research center, and manufacturing base. The main area though was several modest sized rooms which were an invention factory. The first was a very well stocked library. Even 9 years ago I realized how lucky I was to be trying to create technology in the 21rst century, where a physical library of books would not be necessary anymore. Edison and his team must have spent days looking up articles, ordering new books, waiting for new journals to arrive. All of this was becoming available to us on the internet. Edison had nearly 2000 patents; it is hard to imagine how many he would have had if he had the extra time the internet would have allowed him. Another room, which was an inventory room of sorts, was perhaps the most fascinating to me. In this room were samples of nearly everything from animal tusks and bones (which could be used for comparing physical properties), chemicals, anchors, seeds and just about anything else completely unrelated to each other that you could imagine. All of the Edison team could use these items whenever they wanted in order to help them with a new invention. This leads me to the basic premise of the Edison labs. That is, everyone working there was expected to file a new patent, that is invent something original, every week. It didn’t matter what field it was in. They just needed to be fulltime inventors. They could use the two rooms I just described, or any of the others, which were chemistry and material science labs, and a machine shop. They had to document everything they were doing with great detail. They also had to work next to and with all of the other inventors, even though they were working on completely different projects. This was a simple and effective way of sharing information, which could serve multiple purposes. This is something that modern companies still struggle with. Many pharmaceutical giants for instance, have so many products in process, and teams working on them at such distances that complicated software are needed to share data, so that no one is redoing work that has already been done. Even with this, most researchers will admit to wasted effort.
The Edison labs had ideas about research which I wanted to explore 9 years ago to create a movie and set-up systems at Tech Pro. I was inspired, and did some of what I had learned, but of course left so much undone, including the movie itself. Part of the exploration of labs that I will be undertaking is to see if this type of development is being done, or is even possible today. It starts with two basic assumptions. The first idea is that you can be small enough to be in close contact with others (or at least well connected enough though the internet) so that ideas become contagious. The other is whether invention can be structured like other jobs, such as painting a house. Edison’s requirements for patent applications assumed, like a house painter, that with effort, and a certain amount of time, a job could be finished. Painting a house may take a week, so does inventing the phonograph! Was this possible because of the times, where the industrial revolution had made the ability to actually make things that others had only theorized about before possible? Perhaps we are in another one of these times, where computation, connectivity, nanoscience and genomics make it possible to realize ideas that humanity has had for ages. This will be interesting to see, and who knows? Maybe a movie can be made about it.

Tuesday, July 7, 2009

The Brains of the Lab

The day before I left for France, where I would be spending most of the next year, I received a brain. That is, a human brain. I had this brain on order and it arrived in a jar of formaldehyde and I had only 24 hours to decide what to do with it. I am certainly a rational guy, and though I tend to love sci-fi, even the old B movie variety, where a brain is reanimated, or for that matter the Steve Martin Comedy “The Man with Two Brains”, I know that this delivery is just another complex material, which I could test in my material science lab. That it was once the center of operations for a real person is what makes it most interesting though. That there is still so much mystery surrounding an animal organ also makes it intellectually thrilling. The arrival of a brain, which I ordered naively, to do physical testing on it, did leave me with a sense of responsibility. After all, I am so uneducated about the physics of the brain, that unlike the polymer samples that arrive, I didn’t know the “shelf life” of the brain. That is, I didn’t know if it would last until I got back from France. So I was determined to do something with it.

I am far from the first person to want to study the physical mechanics of the brain. In the building where I work, there is a lab which looks at dead neurons with a high powered microscope called an Atomic Force Microscope (AFM), in order to see the physical forces that make up these ever important cell. I had spoken with a professor 6 months ago that did this, because I had read an interesting article in Nature about the topography of the brain, and how the human brain's crumpled structure may explain some high level processing. None of this do I know anything about, other than the occasional article or popular book. But, since I have a physical testing lab at my disposal, I thought that I could look at the physics of these folds in a unique way. It wasn’t the forces of the neuron, like the AFM was measuring, but a macro structure, which involved axons, dendrites, and in a naïve way, just the stickiness of the tissue itself. So I grabbed a grad student, who was used to dissections, and we tore into the brain, and I ran some tests. I am not sure if this is what the poor guy who donated his body to science had in mind, but even though this sounds crude, it was done with utmost respect, and the deep desire to acquire enough data, that I , or someone else could discover something useful from it. I have some of this data, and there is still more to get, so I have real hope that it will be somehow useful.

All of this is not to talk about my results, or my knowledge (or lack thereof of neuro science), but to speak more to method, and how these types of ideas are what makes a life in expiremental science interesting. I have another blog (http://putmanonart.blogspot.com) where I talk about jazz improvising and the comparisons to discoveries in science. In this, my first essay in this new blog series I explore the science alone and a bit more about a very old fashioned idea, the science lab. The lab has in recent years been compared to printed newspapers, libraries and more recently printed books. These all may indeed at one point, in the near future, become nostalgic rather than practical. Technology such as the internet and mobile reading devices, are beginning to make acquiring reading material faster, and more importantly possible, without leaving home. I like a book, and had trouble at first getting used to my Amazon Kindle, but now I love it. The advantage of being able to buy books wherever there is a wifi signal, and read all of them on a single device far outweighs the tactical enjoyment of the printed page. I also assume that the sensory experience of reading on a mobile device will improve. Isn’t this also the same where scientific research is concerned?
In recent years scientists have been able to collaborate at great distances, with some of the best research papers of the last decade being produced by co-authors who have never been in the same lab together. They share data in the way we all share information, via e-mails, and on-line networks. Even more exciting is a kind of free source movement which involves putting technological and scientific challenges out to the world on the internet as a competition. This way thousands (or millions) of amateurs and professionals from around the world can compete to solve the problem, and be rewarded for it. This is enormously democratizing, and could lead to a rapid expansion of knowledge like we have never seen before. This may very well be like the information boom in reading that I just mentioned. That said there is still a need for labs in which experiments can be run, even if they are running at thousands of labs around the world. Perhaps labs can now be like the personal computer, which is a highly sophisticated calculating machine that we all have. A little lab could exist in every home, or office.

At the same time as I speak about this democratizing, miniaturization of experimentations, it seems that large, expensive labs have become extremely important in order to answer some of the big questions of science. The most publicized example of this is the Large Hadron Collider (LHC) at the CERN labs in Switzerland, which is kilometers in size, and costs over a billion dollars. Without this, fundamental questions in physics may remain in the realm of philosophy, or at the very best unproven theory.

So, I want to figure this out and report it in a public way on this blog, by exploring Europe to find the most interesting in laboratory solutions. From the university traditional lab, to the home lab, to the corporate lab, to the multinational funded multibillion dollar lab. I choose Europe simply for it diversity of culture, history, and the amount of labs available. This is not just to see how work is done in these labs, but more interestingly to see how the inquisitive mind can explore ideas. How can an applied physicist cut into a brain the way I did last week? How can a biologist use an off the shelf microscope and a laptop to explore some new phenomena? How can an amateur astronomer still make discoveries, like they have in the past, at a time when they have the Hubble images at their disposal? This will be a fun journey.